Home People TANG, Tie-Shan

TANG, Tie-Shan

TANG, Tie-Shan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Siences,
1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China


TANG, Tie-Shan


Cell Biology


+86-10-64807296  / 


tangtsh@ioz.ac.cn, tangtsh@yahoo.com


State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Siences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China


Ph.D. in Cell and Developmental Biology, CAS Institute of Developmental Biology, 1998
Research Associate, CAS Institute of Developmental Biology, 1998-2000
Postdoctoral Research Fellowship, UT Southwestern Medical Center at Dallas, 2000-2004
Assistant Instructor of Physiology, UT Southwestern Medical Center at Dallas, 2004-2005
Instructor of Physiology, UT Southwestern Medical Center at Dallas, 2006-2008
Principal Investigator, CAS Institute of Zoology, Beijing, 2008-present

Dr. Tie-Shan Tang is currently a principal investigator of Institute of Zoology, Chinese Academy of Sciences (CAS). Dr. Tang has spent much of his career studying the calcium signaling in health and diseases. A major finding of his work is that dysregulation of intracellular calcium signaling in neuronal cells contributes to the pathogenesis of Huntington’s disease (HD, a polyQ neurodegenerative disease). Based on these key findings, a mechanistic link between disturbed calcium signaling and HD was established, and corresponding therapeutic approaches were pursued both in vitro and in vivo, and were shown to be effective in an in vitro “HD model system” and in vivo whole animal model. One of the therapeutics he has been developing involves a gene therapy method to stabilize neuronal calcium signaling and protect HD neurons from cell death. His main research interest is to investigate the functional regulation of calcium signaling pathway and DNA damage/repair pathway in neurodegenerative diseases, such as polyQ neurological diseases, using experimental approaches including biochemistry, molecular/cellular biology, genetics and mouse models. This will allow him to gain further insight into the molecular mechanism of polyQ diseases, and to develop novel therapeutic strategies.


Selected Publications:

  1. Liu H1, Li X1, Ning G1, Zhu S1, Ma X, Liu X, Liu C, Huang M, Schmitt I, Wüllner U, Niu Y, Guo C*, Wang Q*, Tang TS*. (2016) The Machado–Joseph Disease Deubiquitinase Ataxin-3 Regulates the Stability and Apoptotic Function of p53. PLoS Biol 14(11): e2000733. doi:10.1371/journal.pbio.2000733 (1co-first author, * co-corresponding author)
  2. Wang QC1, Zheng Q1, Tan H1, Zhang B1, Li X1, Yang Y, Yu J, Liu Y, Chai H, Wang X, Sun Z, Wang JQ, Zhu S, Wang F, Yang M, Guo C, Wang H, Zheng Q, Li Y#, Chen Q#, Zhou A*, Tang TS* (2016) TMCO1 is an ER Ca2+ load-activated Ca2+ (CLAC) channel. Cell 165(6):1454-1466. doi: 10.1016/j.cell.2016.04.051. (1co-first author; #co-senior author; *co-corresponding author)
  3. Yi-Han Wang1, Jiu-Qiang Wang1, Qiaochu Wang1, Yun Wang, Caixia Guo, Quan Chen, Tuanyao Chai*, Tie-Shan Tang* (2016) Endophilin B2 promotes inner mitochondrial membrane degradation by forming heterodimers with Endophilin B1 during mitophagy. Sci Rep, 2016 Apr 26; 6:25153. doi: 10.1038/srep25153. (1co-first author; *corresponding authos)
  4. Jinting Yan, Hui Zhang, Yang Liu, Feilong Zhao, Shu Zhu, Tie-Shan Tang*, and Caixia Guo* (2016) Germline Deletion of Huntingtin Causes Male Infertility and Arrested Spermiogenesis in Mice. Journal of Cell Science 129(3):492-501; doi: 10.1242/jcs.173666. Epub 2015 Dec 11.
  5. Wang Z, Huang M, Ma X, Li H, Tang TS*, Guo C* (2016) REV1 promotes PCNA monoubiquitination through interacting with ubiquitinated RAD18. Journal of Cell Science 129: 1223-1233; doi: 10.1242/jcs.179408
  6. Yang Y#, Liu Z#, Wang F#, Temviriyanukul P, Ma X, Tu Y, Lv L, Lin YF, Huang M, Zhang T, Pei H, Chen BP, Jansen JG, de Wind N, Fischhaber PL, Friedberg EC, Tang TS*, Guo C* (2015) FANCD2 and REV1 cooperate in the protection of nascent DNA strands in response to replication stress. Nucleic Acids Res. 43(17):8325-8339. doi: 10.1093/nar/gkv737.
  7. Xiaoling Li, Hongmei Liu, Paula L. Fischhaber*, Tie-Shan Tang* (2015) Towards therapeutic targets for SCA3: insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Progress in Neurobiology 132:34-58. doi: 10.1016/j.pneurobio.2015.06.004.
  8. Qin Y, Guo T, Li G, Tang TS, Zhao S, Jiao X, Gong J, Gao F, Guo C, Simpson JL, Chen ZJ* (2015) CSB-PGBD3 Mutations Cause Premature Ovarian Failure. PLoS Genet. 2015 Jul 28; 11(7):e1005419. doi: 10.1371/journal.pgen.1005419. eCollection 2015 Jul.
  9. Wenjuan Xie, Jiu-Qiang Wang, Qiao-Chu Wang, Yun Wang, Sheng Yao*, Tie-Shan Tang* (2015) Adult neural progenitor cells from Huntington’s disease mouse brain exhibit increased proliferation and migration due to enhanced calcium and ROS signals. Cell Proliferation 48(5):517-531.
  10. Fengli Wang, Paula L. Fischhaber, Caixia Guo, Tie-Shan Tang* (2014) Epigenetic modifications as novel therapeutic targets for Huntington's disease. Epigenomics 6(3): 287-297. 
  11. Liu Y, Yang Y, Tang TS, Zhang H, Wang Z, Friedberg E, Yang W, Guo C*. (2014) Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct. Proc Natl Acad Sci USA. 111(5):1789-1794. doi: 10.1073/pnas.1324168111. Epub 2014 Jan 21.
  12. Xiaoling Li, Fengqin Qu, Wenjuan Xie, Fengli Wang, Hongmei Liu, Shuhui Song, Tingting Chen, Yang Zhang, Shu Zhu, Yun Wang, Caixia Guo, Tie-Shan Tang* (2014) Transcriptomic analyses of neurotoxic effects in mouse brain after intermittent neonatal administration of thimerosal. Toxicological Sciences 139(2):452-465. doi: 10.1093/toxsci/kfu049. Epub 2014 Mar 27.
  13. Lv L, Wang F, Ma X, Yang Y, Wang Z, Liu H, Li X, Liu Z, Zhang T, Huang M, Friedberg E, Tang TS, Guo C*. (2013) Mismatch repair protein MSH2 regulates translesion DNA synthesis following exposure of cells to UV radiation. Nucleic Acids Research 41(22): 10312-10322. doi: 10.1093/nar/gkt793. Epub 2013 Sep 12.
  14.  Wang F, Yang Y, Lin X, Wang JQ, Wu YS, Xie W, Wang D, Zhu S, Liao YQ, Sun Q, Yang YG, Luo HR, Guo C * , Han C * , Tang TS * . (2013) Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington's disease. Human Molecular Genetics   22(18): 3641- 36 53. (*corresponding authors)
  15. Xiuli Zhang#, Lingna Lv#, Qian Chen#, Fenghua Yuan, Ting Zhang, Yeran Yang, Hui Zhang, Yun Wang, Liangyue Qian, Benjamin Chen, Yanbin Zhang, Errol C Friedberg, Tie-Shan Tang*, Caixia Guo* (2013) Mouse DNA Polymerase Kappa Has A Functional Role in the Repair of DNA Strand Breaks. DNA Repair (Amst) 12(5):377-388. (#equal contribtution *corresponding authors)
  16. Jiu-Qiang Wang, Qian Chen, Xianhua Wang, Qiao-Chu Wang, Yun Wang, He-Ping Cheng, Caixia Guo, Qinmiao Sun, Quan Chen, Tie-Shan Tang* (2013) Dysregulation of Mitochondrial Calcium Signaling and Superoxide Flashes Cause Mitochondrial Genomic DNA Damage in Huntington’s Disease. J Biol Chem 288(5): 3070-3084. (*corresponding author)
  17. Zhifeng Wang#, Fengli Wang#, Tie-Shan Tang*, Caixia Guo* (2012) The role of PARP1 in the DNA damage response and its application in tumor therapy. Front Med. 6(2):156-164. (*corresponding authors, invited review)
  18. Guo C, Tang TS, Friedberg EC. (2010) SnapShot: Nucleotide Excision Repair. Cell vol 140(5): 754-754.e1.
  19. Hongyu Wang, Xi Chen, Yuemei Li, Tie-Shan Tang* and Ilya Bezprozvanny* (2010) Tetrabenazine is neuroprotective in Huntington’s disease mice. Molecular Neurodegeneration, 5:18 (*corresponding authors)
  20. Guo C, Kosarek JN, Tang TS and Friedberg EC. (2009) Y-Family DNA Polymerases in Mammalian Cells. Cellular Mol Life Sciences (invited review, in press)
  21. Tang, T.S., Guo, C., Wang, H., Chen, X., Bezprozvanny, I. (2009) Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neuroscience. Feb 4;29(5):1257-66.
    *Highlighted in: The Journal of Neuroscience Feb 4;29(5):i. i
  22. Chen, X., Tang, T.S., Tu, H., Nelson O., Pook, M., Hammer, R., Nukina, N., Bezprozvanny, I. (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J. Neuroscience vol 28:12713-24
  23. Schneider, J.W., Gao. Z., Li, S., Farooqi, M., Tang, T.S., Bezprozvanny, I., Frantz, D., Hsieh, J. (2008) Small molecule activation of neuronal cell fate. Nat Chem Biol Vol 4(7): 408-10
  24. Guo, C., Tang, T.S., Bienko, M., Dikic, I. and Friedberg E.C. (2008) Requirements for the Interaction of Mouse Polκ With Ubiquitin, and its Biological Significance. J. Biol. Chem. 283 (8): 4658-4664.
  25. Tang, T.S., Chen, X., Liu, J., Bezprozvanny, I. (2007) Dopaminergic signaling and apoptosis of medium spiny neurons in Huntington’s disease. J. Neuroscience? vol 27: 7899-7910.
  26. Guo C, Sonoda E, Tang TS, Parker JL, Bielen AB, Takeda S, Ulrich HD, Friedberg EC. (2006) REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell 23(2):265-71.
  27. Guo C, Tang TS, Bienko M, Sonoda E, Parker JL, Bielen AB, Takeda S, Ulrich HD, Dikic I, Friedberg EC. (2006) Ubiquitin-Binding Motifs in Rev1 Protein are Required for Its Role in the Tolerance of DNA Damage. Mol Cell Biol 26(23):8892-900.